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Abstract
The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer
composite (SMPC) laminate, along with the residual strain during SMPC fabrication, results in buckling deformation of
the inhomogeneous laminate. This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate
under initial biaxial prestrains. Both linear and nonlinear buckling analyses are carried out using the energy method. The
influences of prestrain biaxiality, temperature, and ply angle on the buckling wavelength, critical buckling prestrain, and
buckling amplitude are calculated. The results demonstrate that the critical buckling wavelength of the SMPC laminate is
independent of the prestrain, while the amplitude is almost independent of temperature. In addition, the optimal fiber stacking
configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic
algorithm.
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1 Introduction

Shape memory polymer (SMP) is a kind of material that
can undergo large macroscopic deformation in response to
external stimuli, such as changes in temperature, electric
field, light, magnetic field, moisture, or even pH [1–5]. SMP
has advantages of large deformation capacity, low cost and
density, good processability, and adjustable glass transition
temperature (Tg). However, the mechanical properties of
SMP limit its applications to some extent [6–9]. Therefore,
reinforcements, which can be particles or fibers, are embed-
ded in the SMP matrix to fabricate shape memory polymer
composites (SMPCs). SMPCs have good shape memory
properties, additional functionality due to the type of rein-
forcements, and improved modulus and strength compared
to SMPs [10–12].
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At present, continuous fiber-reinforced SMPC has been
widely used in aerospace fields [13–18], and the related
applications have gradually changed from functional compo-
nents to structural–functional integrative components, which
requires SMPCs with excellent mechanical properties. With
the development of composite manufacturing technologies,
dozens of technical processes have been developed, among
which the manufacturing technology based on continuous
fiber-reinforced prepreg has become the preferred method for
the preparation of high-performance composites. Unlike gen-
eral composites, the fiber volume fraction of SMPC should
be relatively low (< 30%) to maintain its shape memory
property [8]. Therefore, it is necessary to lay SMP films
between the prepreg layers to adjust the fiber volume frac-
tion. As a result, fibers will not be evenly distributed in the
resin matrix, and the existing fiber-rich region and resin-
rich region contribute to the inhomogeneity of the SMPC
laminate. Due to the mismatch in coefficients of thermal
expansion (CTE) between the fiber-rich region and resin-
rich region and the residual strain during the curing process
[19, 20], the initial prestrain will exist in the inhomogeneous
SMPC laminate, resulting in buckling deformation of the
composite [21]. However, few studies have been conducted
on this phenomenon.
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There have been many studies on the buckling behavior
of inhomogeneous laminates, which are simplified into lami-
nate layers bonded with resin layers. Sironic and Briscoe et al.
[22, 23] studied the buckling behaviors of isotropic rectangu-
lar plates on elastic foundations under in-plane compressive
loads using a two-parameter foundation model. Behzad et al.
[24] studied the buckling behaviors of orthotropic laminated
plates on elastic foundations under in-plane bending loads.
Yang, Cao, and Topal et al. [25–27] investigated the buckling
behaviors of elastic foundation-supported laminated plates
with specific fiber plying angles based on classical lamina-
tion theory (CLT) and obtained the relationships between
buckling loads and elastic foundation constants. The results
showed that the critical buckling load increased with increas-
ing elastic modulus of the foundation.

In the above-mentioned studies, the laminated plates are
simplified into isotropic or orthotropic layers, where the
effect of fiber plying angles on critical buckling loads could
not be considered. Moreover, the effect of initial prestrain was
not considered, which, however, cannot be ignored during the
curing process. In addition, as typical temperature-sensitive
materials, the mechanical properties of SMP and SMPC
are closely related to temperature, so temperature has a
great influence on the buckling behaviors of inhomogeneous
SMPC laminates. Therefore, relevant fundamental theoret-
ical research on the buckling behaviors of inhomogeneous
SMPC laminates considering prestrains is urgently needed.

In this paper, a macroscopic buckling model of inho-
mogeneous SMPC laminates under initial biaxial prestrains
is established. The linear and nonlinear buckling analyses
are carried out using the energy method. The influences of
prestrain biaxiality, temperature, and fiber ply angle on the
buckling wavelength, critical buckling prestrain, and buck-
ling amplitude are then calculated. Finally, the fiber stacking
configurations of the inhomogeneous SMPC laminates are
optimized using a genetic algorithm.

2 Theoretical Model of the Inhomogeneous
SMPC

2.1 Description of the Model

To study the macroscopic nonlinear buckling behaviors of
the aforementioned inhomogeneous SMPC laminate under
initial uniform in-plane prestrains, a simplified model is uti-
lized. This model consists of an upper part, which represents
the SMPC laminated plate, and a bottom part, which repre-
sents the SMP matrix with a finite thickness, as shown in
Fig. 1. The resin matrix is assumed to be isotropic and per-
fectly bonded to the SMPC laminate, and the laminated plate
is subjected to uniform in-plane biaxial prestrains. The thick-
nesses of the laminate and resin are h and H , respectively.

Fig. 1 Schematic of the inhomogeneous SMPC laminate with prestrains

Only the o − x1x2 plane of the laminated plate is subjected
to uniform in-plane biaxial prestrains ε0

11 and ε0
22, which

are probably caused by the residual stresses or a mismatch
in thermal expansion coefficients between the laminate and
resin matrix during curing. The SMPC laminate is assumed
to be in the plane stress state.

A Cartesian coordinate system (o−x1x2x3) is established,
where the o − x1x2 plane lies at the interface of the SMPC
laminate and resin matrix, and the x3-axis is oriented perpen-
dicular to the surface of the laminate, pointing upwards. It is
worth noting that prestrain control, rather than prestress con-
trol, is selected as the loading mode in this study because the
prestress and prestrain can be easily converted between each
other using the stiffness of the material. The strain energies
of the SMPC laminate and resin matrix during buckling are
then calculated by the energy method, and the key parameters
can be obtained by the variational method.

2.2 The Strain Energy of the Laminate

The von Karman nonlinear elastic plate theory is used to
model the laminate. The expressions between the membrane
strains and displacements are [28]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε11 = ε0
11 + ∂u

∂x1
+ 1

2

(
∂w
∂x1

)2

ε22 = ε0
22 + ∂v

∂x2
+ 1

2

(
∂w
∂x2

)2

ε12 = ∂u
∂x2

+ ∂v
∂x1

+ ∂w
∂x1

∂w
∂x2

(1)

⎧
⎪⎪⎨

⎪⎪⎩

κ11 = − ∂2w

∂x2
1

κ22 = − ∂2w

∂x2
2

κ12 = −2 ∂2w
∂x1∂x2

(2)

where ε0
11 and ε0

22 are the in-plane prestrains caused by resid-
ual stresses or a mismatch in thermal expansion coefficients
between the SMPC laminate and resin matrix, which can
be simplified as homogeneous in-plane strains. {u v w} is the
displacement vector of the SMPC laminate. It should be noted
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that the strains in the above equations contain the nonlinear
term of w because a moderately large deflection will lead to
a change in the membrane length of the laminate.

According to CLT, the internal forces and moments of
composite laminated plates can be expressed as

{
N
M

}

=
[

A B
B D

]{
ε

κ

}

(3)

where the expressions for these stiffness matrices of lami-
nates (A, B, and D) with different ply stacking configurations
are shown in Section S1 (Supplementary Information). N and
M are the internal force matrix and internal moment matrix
of a unit length on the cross section of the laminate.

Assuming that the shear stresses at the laminate/resin
interface are P1 and P2 (in the x1- and x2-directions), and
the normal stress is P3. Omitting the body forces, the equi-
librium equations expressed in terms of resultant force and
moment are as follows:

Nαβ, β + Pα = 0 (4)

Mαβ, αβ + P3 = 0 (5)

where the Greek indices α and β take the values 1 and 2.
Substituting Eq. (3) into Eqs. (4) and (5) yields the following
equilibrium equations between the interfacial stress and the
displacement of the SMPC laminate:

⎡

⎢
⎣

L11 L12 L13

L12 L22 L23

L13 L23 L33

⎤

⎥
⎦

⎧
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w

⎫
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⎪⎭
=

⎧
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⎪⎩
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P3

⎫
⎪⎬

⎪⎭
(6)

The operator can be expressed as follows:
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(7)

The laminated plate will begin to buckle when the pre-
strain ε0 reaches a critical value, resulting in a specific
buckling mode shape. Both the static method and the
energy method can be used to derive the same equilib-
rium differential equations and solve this problem. However,
for practical problems, especially post-buckling problems,
solving the equilibrium differential equations is always chal-
lenging. Nevertheless, the problem can be greatly simplified
when using the energy method to approximate the solution.
Therefore, the nonlinear post-buckling behaviors of the inho-
mogeneous SMPC are determined by the energy method in
this study.

During the pre-buckling state, the laminated plate under-
goes linear deformation and remains flat. It is assumed that
the post-buckling morphology of the laminated plate is a strip
mode, and the deflection w(x1, x2) can be expressed as

w(x1, x2) = Acos(kx1) (8)

where A is the amplitude, and the buckling wavelength can be
expressed as λ = 2π/k. Because the modulus of the laminate
is much larger than that of the resin matrix, Huang et al.
showed that the shear stress at the laminate/resin interface
can be ignored [29], that is, P1 = P2 = 0. Substituting
Eq. (8) into Eq. (6), the in-plane displacements u and v of
the laminated plate can be solved as

u = A2k
8 sin(2kx1), v = 0 (9)

The components of strain εαβ and καβ can be obtained
by substituting Eqs. (8) and (9) into Eqs. (1) and (2). When
buckling occurs, the surface strain energy per unit area of the
laminated plate caused by in-plane deformation is

Us = k
4πb

∫ 2π/k

x1=0

∫ b

x2=0
(N1ε1 + N2ε2 + N12ε12)dx1dx2

(10)

where N1ε1 + N2ε2 + 2N12ε12 can be expressed in terms of
the stiffness coefficients and strains of the laminate as

N1ε1 + N2ε2 + N12ε12

= A11ε11
2 + 2A12ε11ε22

+ A22ε22
2 + 2A16ε12ε11 + 2A26ε12ε22

+ 2A66ε12
2 + B11κ11ε11 + B12(κ22ε11

+ κ11ε22) + B22κ22ε22

+ B16(κ12ε11 + κ11ε12) + B26(κ12ε22

+ κ22ε12) + B66ε12κ12 (11)
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The bending strain energy Ub per unit area of the laminate
caused by flexural deformation can be calculated as

Ub = k
4πb

∫ 2π/k

x1=0

∫ b

x2=0
(M1κ1 + M2κ2 + M12κ12)dx1dx2

(12)

where M1κ1 + M2κ2 + 2M12κ12 can also be expressed in
terms of the stiffness coefficients and strains of the laminate
as

M1κ1 + M2κ2 + M12κ12

= D11κ11
2 + 2D12κ22κ11

+ D22κ22
2 + 2D16κ11κ12 + 2D26κ12κ22

+ 2D66κ12
2 + B11ε11κ11 + B12(ε11κ22 + ε22κ11)

+ B22ε22κ22 + B16(κ11ε12 + κ12ε11)

+ B26(κ22ε12 + κ12ε22) + B66ε12κ12 (13)

Therefore, the expression of Ul = Us+Ub can be obtained
by substituting the expressions of εαβ and καβ into Eqs. (10)
and (12), so we can calculate that

Ul = 1

2

[
A11

16
k4 A4 + A11ε

0
11 + A12ε

0
22

2
k2 A2 + A11ε

0
11

2

+ 2A12ε
0
11ε

0
22 + A22ε

0
22

2
]

+ 1

4
A2k4 D11 (14)

2.3 The Strain Energy of the Resin Matrix

Since the resin matrix is too thick to be considered a plane
stress problem, the strain energy per unit area of the matrix
can be expressed as

Ur = k

4πb

∫ 2π/k

x1=0

∫ b

x2=0

∫ −H

x3=0
σ r

i jε
r
i j dx1dx2dx3 (15)

where i and j take the values 1, 2, and 3, and follow the Ein-
stein summation convention (similarly hereinafter). σ r

i j and
εr

i j are the stress and strain components of the resin matrix,
which are functions of the (x1, x2, x3) coordinates.

Omitting the body force of the resin matrix, the dis-
placement equilibrium equation can be expressed as the
Lamé–Navier form [28]

(1 − 2νr )∇2ur
i + ur

j , j i = 0 (16)

where νr is Poisson’s ratio of the resin matrix. Because the
shear stress at the laminate/resin interface can be ignored and
the normal displacements of the upper surface of the matrix

resin and the bottom surface of the laminate are continuous,
the following boundary conditions can be obtained:

P1 = P2 = 0, ur
3 = w(x1, x2), at x3 = 0

σ r
i j = 0, at x3 = −H

(17)

The displacement components ur
i are assumed to be [30]

⎧
⎪⎨

⎪⎩

ur
1 = B(x3)sin(kx1)

ur
2 = 0

ur
3 = C(x3)cos(kx1)

(18)

Substituting Eq. (18) into the displacement equilibrium
equation of the resin matrix Eq. (16), together with the bound-
ary conditions of Eq. (17), the expressions for B(x3) and
C(x3) can thus be calculated as

B(x3) = (2νr −1+kx3)Ae
x3

x3+H

2(1−vr )

C(x3) = (2−2νr +kx3)Ae
x3

x3+H

2(1−νr )

(19)

For an isotropic resin matrix, the strain–displacement rela-
tionship and stress–strain relationship are

εi j = 1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
(20)

σi j = Er
1+νr

εi j + νr Er
(1+νr )(1−2νr )

(ε11 + ε22 + ε33)δi j (21)

where δi j is the Kronecker symbol. Substituting Eqs.
(18)–(21) into Eq. (15) yields the expression for Ur

Ur = A2k Er
16(1−νr

2)

[
(3−4νr )[−4Hk+2sinh(2Hk)]

5+2H2k2+4νr (2νr −3)+(3−4νr )cosh(2Hk)

]
(22)

2.4 The Strain Energy of the Inhomogeneous SMPC

The total strain energy per unit area of the inhomogeneous
SMPC Utotal can be expressed as

Utotal = Us + Ub + Ur (23)

where Us , Ub, and Ur can be expressed as:

Us = 1

2

[
A11

16
k4 A4 + A11ε

0
11 + A12ε

0
22

2
k2 A2 + A11ε

0
11

2

+ 2A12ε
0
11ε

0
22 + A22ε

0
22

2
]

(24)

Ub = 1
4 D11k4 A2 (25)

Ur = A2k Er
16(1−νr

2)

[
(3−4νr )[−4H+2sinh

(
2H

)]
5+2H

2+4νr (2νr −3)+(3−4νr )cosh
(
2H

)

]

(26)
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where H = k H , which is the dimensionless thickness of the
resin. To simplify and facilitate the analysis of the effect of
the fiber ply angle on the buckling behaviors of inhomoge-
neous SMPC laminates, the fiber stacking configuration is
assumed to be [±α]2. The values of A11, A12, A22, and D11

for SMPC laminates with different fiber ply angles at dif-
ferent temperatures are shown in Table S2 (Supplementary
Information).

3 Buckling and Post-Buckling Analysis

As seen in Eq. (23), the strain energy Utotal is a function of
the dimensionless thickness H , the fiber plying angle α, and
the temperature T . The strain energy corresponding to the
critical buckling state of the inhomogeneous SMPC laminate
is minimal. Thus, the critical buckling parameters at different
temperatures can be calculated by taking the extreme value
of Utotal .

Before calculating the critical buckling parameters, the
influence of H on Ur should be studied first. As shown in
Fig. 2a, Ur increases monotonically with k H until it grad-
ually approaches a constant value. This demonstrates that
the strain energy of the resin matrix increases with increas-
ing matrix thickness. In addition, Ur also increases with
increasing νr ; that is, the incompressibility of the resin matrix
contributes to the strain energy of the matrix during buck-
ling. To eliminate the effect of Poisson’s ratio of the matrix,
we multiply Ur by (1 − νr

2). The curve of Ur (1 − νr
2)

with respect to the change in k H is shown in Fig. 2b. When
k H > 4.5, Ur (1 − νr

2) gradually converges to a constant
value A2k Er/8, which is independent of the thickness of the
resin matrix. From the above analysis, it can be seen that
when H = 0, Ur = 0, and this problem can degenerate
into the buckling process of the composite laminate; when
H > 4.5, the calculated result of Ur is consistent with that
of Song’s research [31].

In this section, for the convenience of subsequent param-
eter analysis and optimization design, only the case where
H > 4.5 is considered to obtain the analytical expressions
for key parameters, such as the critical buckling strain, buck-
ling wavelength, and buckling amplitude. As shown in Fig. 2,

when H > 4.5, Ur will converge to Er k A2

8(1−νr
2)

. Therefore, the
total energy Utotal can be expressed as:

Utotal = c1k4 A4 + c2k4 A2 + c3k2 A2 + c4k A2 + c5 (27)

Fig. 2 a The strain energy of the resin matrix Ur and b Ur
(
1 − ν2

r

)
as

a function of k H

The coefficients ci are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = A11
32

c2 = D11
4

c3 = A11ε
0
11+A12ε

0
22

4

c4 = Er
8(1−νr

2)

c5 = A11ε
0
11

2+2A12ε
0
11ε

0
22+A22ε0

22
2

2

(28)

The minimization of the total energy Utotal with respect
to the amplitude A and k requires that

⎧
⎨

⎩

∂Utotal
∂ A = 4c1k4 A3 + 2

(
c2k4 + c3k2 + c4k

)
A = 0

∂Utotal
∂k = 4

(
c1 A4 + c2 A2

)
k3 + 2c3k A2 + c4 A2 = 0

(29)
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It can be solved that

kc =
(

c4
2c2

) 1
3 (30)

A(ε) =
√

− c3
2c1kc

2 − 3c2
2c1

(31)

The critical buckling wavelength can then be calculated
as

λc = 2π
kc

(32)

From Eqs. (30)–(32), we can see that there is no prestrain
term in the expressions for kc and λc, while the expression
for A contains the biaxial prestrain terms. This means that
the buckling wavelength does not change with increasing pre-
strain, while the buckling amplitude varies with the prestrain.
In other words, for an inhomogeneous SMPC laminate with a
definite fiber stacking configuration, its buckling wavelength
under biaxial prestrains is only related to the material prop-
erties, while its amplitude will increase monotonically with
the prestrains. In addition, the stripe buckling mode can occur
in the inhomogeneous SMPC under the influence of in-plane
biaxial prestrains only when the following relationship is sat-
isfied:

− c3
2c1kc

2 − 3c2
2c1

> 0 (33)

That is, the biaxial prestrains must satisfy the following
relationship:

A11ε
0
11 + A12ε

0
22 < −3D11

[
Er

4(1−νr
2)D11

] 2
3 (34)

Considering the biaxial compressive prestrains, for con-
venience of the subsequent analysis, we use a factor γ to
evaluate the biaxiality, i.e.,

ε0
11 = −ε, ε0

22 = −γ ε (35)

The critical buckling strain can be calculated when A(ε) =
0, and the result is

εc = 3D11
A11+γ A12

[
Er

4(1−νr
2)D11

] 2
3 (36)

Substituting Eq. (36) into Eq. (31) yields the expression
for amplitude A in terms of critical strain and prestrain, i.e.,

A =
√

12D11
A11+γ A12

(
ε
εc

− 1
)

(37)

It should be noted that the buckling analysis mentioned
above is linear buckling analysis, and only basic informa-
tion about the critical buckling prestrain and wavelength can

be obtained. The mechanical equilibrium path (load–dis-
placement curve) of the composite material will bifurcate
when buckling. After the bifurcation point, the material will
not completely lose its load-bearing capacity but enter the
secondary equilibrium path [32]. Therefore, the mechanical
behaviors of the material in the process of buckling will be
highly nonlinear. When ε < εc, the laminated plate deforms
linearly, and the laminate will remain flat (A = k = 0), so
the buckling amplitude of the composite will be a piecewise
function during the uniaxial compression process

A =
⎧
⎨

⎩

0 ε ≤ εc√
12D11

A11+γ A12

(
ε
εc

− 1
)

(ε > εc)
(38)

So far, the nonlinear buckling behaviors of inhomoge-
neous SMPC with a fiber stacking configuration of [±α]2

under biaxial prestrains have been investigated. The ana-
lytical expressions for the critical buckling prestrains and
wavelength have been obtained. The evolution of the buck-
ling amplitude with prestrain in the nonlinear buckling
process has also been studied. It should be noted that when
the fiber stacking configuration is changed (i.e., the tension-
bending coupling coefficients need to be considered), only
the coefficients c1, c2, c3 and c4 in Eq. (28) will change,
while the subsequent expressions for critical parameters will
not change. The analytical expressions for critical buckling
strain and wavelength can still be obtained by substituting the
changed c1, c2, c3 and c4 into Eq. (29). Therefore, the method
proposed in this paper can be applied to describe the nonlin-
ear buckling behaviors of arbitrary inhomogeneous SMPC
under biaxial prestrains.

4 Results and Discussion

4.1 Numerical Verification

Before the parameter study, the commercial software Abaqus
should be used first to verify the accuracy of the theoretical
analysis proposed in this paper. The detailed descriptions of
the finite element model and post-buckling analysis method
can be found in Section S2 (Supplementary Information).
The mechanical properties of the resin matrix and laminate
in the model at different temperatures are the same as those
in [33], which are shown in Table S1 (Supplementary Infor-
mation).

Figure 3 shows the first-order buckling mode of inhomo-
geneous SMPC with a fiber stacking configuration of [±30]2
at 60◦C. The thickness of a single-layer lamina is 0.15 mm,
and the thicknesses of the resin matrix are H = 20h and
H = 50h. The model exhibits a periodic striped buckling
morphology on its surface, indicating that the FEA model
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Fig. 3 The first-order buckling mode of inhomogeneous SMPC lam-
inate with a fiber stacking configuration of [±30]2 at 60◦C (with a
deformation scale factor of 2), a H = 20h, and b H = 50h

Fig. 4 Comparison between the theoretical and FEA results of the
buckling wavelength of inhomogeneous SMPC with a fiber stacking
configuration of [±30]2 under different temperatures

can effectively simulate the striped buckling mode of the
inhomogeneous SMPC. In addition, Fig. 3a, b show that the
buckling wavelength is almost independent of the thickness
of the resin matrix because k H is already greater than 5 when
H ≥ 20h. Therefore, to improve computational efficiency,
the thickness of the matrix will be selected as H = 20h in
the subsequent FEA.

Figure 4 shows a comparison between the theoretical and

Fig. 5 Comparison between the theoretical and FEA results of the
buckling amplitudes of inhomogeneous SMPC with a fiber stacking
configuration of [±30]2 at 60◦C, a γ = 0, and b γ varies from 0 to 1

FEA results of the buckling wavelength of the inhomoge-
neous SMPC laminate with a fiber stacking configuration of
[±30]2 at different temperatures. The buckling wavelength
predicted by the theoretical solution in this study is in accor-
dance with the simulation result, with an error within 3% at
100◦C. This validates the accuracy of the theoretical critical
buckling parameters proposed in this article.

The variation of buckling amplitudes with prestrains dur-
ing the post-buckling analysis is shown in Fig. 5. The fiber
stacking configuration remains [±30]2, and the temperature
is 60◦C. In Fig. 5a, γ is set to 0; that is, we only consider
the uniaxial prestrain. The U3 displacement contours of inho-
mogeneous SMPC under different uniaxial prestrains are also
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shown in this figure. It can be seen that the theoretical result
shows good agreement with the FEA result when ε is rel-
atively large, while they apparently differ from each other
when ε is small. It can also be seen in Fig. 5a that the theoret-
ical A = 0 when ε < 2.21%, while the numerical A = 0.05
mm when ε = 2%. The reason for this phenomenon is that
imperfections are introduced in the post-buckling analysis
initially, and the laminate will have premature linear buckling
deformation, leading to the inaccuracy of the critical buck-
ling strain calculated by FEA, which will be smaller than that
of the theoretical result [32]. In other words, with the intro-
duction of initial imperfections, the inhomogeneous shape
memory polymer composite laminates will buckle before
the prestrain reaches the critical buckling prestrain. There-
fore, when the uniaxial prestrain is smaller than the critical
buckling prestrain, the buckling amplitude obtained by FEA
is greater than 0. However, the variation trend of buckling
amplitudes with prestrains obtained through theoretical cal-
culation aligns with the simulation result, and the gap will be
reduced to less than 5% with the increase of prestrains.

Besides, Fig. 5b shows the buckling amplitudes of inho-
mogeneous SMPC laminates as a function of γ with different
prestrains obtained from theoretical and FEA. It can be seen
that the results obtained through theoretical calculation is in
accordance with the simulation result, and the error is within
5%. Therefore, the theoretical method proposed in this study
can well predict the buckling and post-buckling behaviors
of inhomogeneous SMPC induced by prestrains at different
temperatures.

4.2 Parametric Study

The normalized prestrain ε/εc, normalized buckling wave-
length λ/h, and normalized buckling amplitude A/h are
introduced to facilitate subsequent parametric research.

4.2.1 The Buckling Map

According to Eq. (34), the inhomogeneous SMPC will buckle
only when the biaxial prestrains satisfy a certain relation.
Thus, the buckling maps of inhomogeneous SMPCs with
different fiber stacking configurations at various tempera-
tures are plotted in Fig. 6. The xy coordinates are biaxial
prestrains ε0

11 and ε0
22, respectively. The region below the

curve represents the inhomogeneous SMPC laminate that
will undergo nonlinear buckling deformation at that level of
biaxial prestrain; the region above the curve represents the
inhomogeneous SMPC laminate that will not buckle at that
level of biaxial prestrain. The prestrains corresponding to the
curve are the critical buckling prestrains.

As shown in Fig. 6a, for inhomogeneous SMPC lami-
nates with the same fiber stacking configuration, the critical
buckling curves at different temperatures are parallel to one

Fig. 6 The buckling maps of inhomogeneous SMPCs: a the buckling
map of inhomogeneous SMPC with a fiber stacking configuration of
[±45]2 at different temperatures, and b the buckling map of inhomo-
geneous SMPC at 60◦C with different fiber stacking configurations

another. The area of the post-buckling region increases with
increasing temperature, indicating that the inhomogeneous
SMPCs can buckle over a wider range of biaxial prestrains
as the temperature increases. It can be seen in Fig. 6b that
with increasing ply angle α, the area of the nonlinear buckling
region decreases in the biaxial prestrain region of −4.2% <

ε0
11 < −2% and −12% < ε0

22 < 15%, which indicates that
inhomogeneous SMPCs are more prone to buckling when
α = 0◦. The buckling maps provide an easy way to deter-
mine the buckling state of inhomogeneous SMPC laminates
at different biaxial prestrain levels.
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Fig. 7 The normalized buckling wavelength of inhomogeneous SMPC
as a function of temperature with different fiber stacking configurations

4.2.2 The Critical BucklingWavelength

The critical buckling wavelength is independent of prestrains,
and only relies on the mechanical properties of the SMPC
laminate and SMP matrix. Therefore, it is important to study
the influence of ply angle α and temperature on the buckling
wavelength before examining other key parameters related
to prestrains. It can be seen in Fig. 7 that, in general, the
normalized buckling wavelength λ/h increases with increas-
ing temperature and decreases with increasing ply angle
α. It should be noted that the influence of α on λ/h is
particularly pronounced and unusual when the temperature
increases from 60 °C to 80 ◦C. When α is relatively small,
the increasing range of λ/h is significant, but as α increases,
the increasing range gradually decreases and even becomes
negative. For example, when α = 0◦ and 15◦, the increas-
ing range of λ/h exceeds 100%; as α increases to 60◦, the
increasing range decreases to 41.2%; and when α = 75◦ and
90◦, λ/h actually decreases.

The reason for this phenomenon is that the critical buck-
ling wavelength of inhomogeneous [±α]2 SMPCs is mainly
determined by the bending stiffness D11 of the SMPC lam-
inate and the modulus Er of the SMP matrix. When α is
relatively small, D11 mainly depends on the longitudinal
modulus E11 of SMPC, which is determined primarily by
the modulus of reinforcing fibers. As α increases, the con-
tribution of the transverse modulus E22 to D11 gradually
increases, which is mainly dependent on the modulus of
resin. As shown in Table S1 (Supplementary Information),
E11 only decreases by 23.4% as the temperature increases
from 60◦C to 80◦C, but E22 and Er decrease by 99.5% and
90.9%, respectively. We can also see in Table S2 (Supplemen-
tary Information) that when the temperature increases from

60◦C to 80◦C, D11 of the [±0]2 laminate decreases from 751
N · mm to 300 N · mm, and the decreasing range is 60%, while
the D11 of the [±90]2 laminate at 60◦C and 80◦C is 231 N
· mm and 0.1627 N · mm, respectively, and the decreasing
range is 99.9%. Therefore, with an increase in the ply angle
α, the increasing range of λ/h continuously decreases; and
when α = 75◦ and 90◦, λ/h actually decreases.

4.2.3 The Critical Buckling Strain

In this section, the influences of prestrain biaxiality γ , ply
angle α, and temperature T on critical buckling prestrains
εc are investigated, and only biaxial compressive prestrains
are considered. For convenience, positive values are used to
represent compressive strain in the following article. It can
be seen in Fig. 8a that with increasing temperature, the crit-
ical prestrains decrease continuously, i.e., under the same
level of prestrains, the inhomogeneous SMPC is more prone
to buckling with increasing temperature. When the tempera-
ture increases from 20◦C to 80◦C, εc decreases linearly, with
a decreasing range of 87%. However, when the temperature
continues to rise to 100◦C, εc remains almost unchanged.
This is because the mechanical properties of SMP are closely
related to temperature. With increasing temperature, SMP
gradually changes from a glassy state to a rubbery state,
and the SMPC laminate and SMP matrix become “soft”, so
the inhomogeneous SMPC is more prone to undergo out-
of-plane buckling under prestrains. When the temperature
reaches 80 ◦C, the SMP has become sufficiently “soft”, and
the reinforcing fibers become the key factor hindering out-
of-plane deformation. However, the mechanical properties
of the fiber are almost independent of temperature, so εc

remains almost unchanged when the temperature continues
to increase.

Figure 8b shows the variation in εc with α at 60◦C. It can
be seen that εc increases with increasing α, i.e., the inhomo-
geneous SMPC is more likely to buckle when the ply angle
approaches the principal direction of the laminate. In addi-
tion, we can also see in Fig. 8 that the critical buckling strain
decreases when γ increases from 0 to 1. This indicates that
the introduction of biaxial prestrains in the inhomogeneous
SMPC is more likely to cause out-of-plane buckling than
introducing uniaxial prestrain. Notably, εc is almost inde-
pendent of γ when α = 0◦. When α = 0◦, the stress in the
2-direction of the composite is almost entirely borne by the
resin, while the contribution of the prestrain applied in the
2-direction to the strain energy is very small, so the effect of
ε0

22 on εc is almost negligible.

4.2.4 The Buckling Amplitude

According to Eq. (38), the dimensionless parameter A/h is
a piecewise function that is related to ε/εc, T , γ , and α.
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Fig. 8 The critical buckling strain as a function of temperature and ply
angle: a inhomogeneous SMPC with a ply angle of 45 ◦ at different
temperatures, and b inhomogeneous SMPC with different ply angles at
60◦C

The effects of these parameters on the normalized buck-
ling amplitude A/h during the post-buckling process of
inhomogeneous SMPC will be studied below. Only biax-
ial compressive prestrains are considered in this section. The
effect of γ on A/h will be investigated first. It can be seen
in Fig. 9 that when ε/εc < 1, i.e., the prestrain of the lami-
nate is less than εc, only in-plane deformation occurs on the
inhomogeneous SMPC, and A/h = 0; as ε/εc > 1, A/h
increases with increasing prestrain, but the growth rate grad-
ually slows down. In addition, when γ changes from 0 to
1, A/h gradually decreases at the same level of prestrain,

Fig. 9 The normalized buckling amplitude of inhomogeneous SMPC
laminate with a ply angle of 45 ◦ at 60◦C as a function of normalized
prestrain

indicating that ε0
22 can inhibit the increase in the buckling

amplitude during the post-buckling process.
Figure 10a shows the normalized buckling amplitude as a

function of temperature when α = 45◦ and ε/εc = 3. The
buckling amplitude of the inhomogeneous SMPC laminate
in the post-buckling process is only related to the biaxiality of
the prestrains but independent of the temperature. As shown
in Fig. 10b, when γ = 0 (the uniaxial prestrain state), the
buckling amplitude is independent of α; when γ �= 0, the
buckling amplitude decreases first and then increases with
increasing α. Therefore, it can be concluded that when α =
0◦, the buckling amplitude is almost independent of γ ; and
when α = 60◦, the buckling amplitude is most sensitive to
γ .

5 Design Optimizations by Genetic
Algorithm

The influences of ply angle, temperature, and prestrain biax-
iality on the critical buckling prestrain, buckling wavelength,
and amplitude of the inhomogeneous [±α]2 SMPC laminate
have been investigated in the previous section. In practice,
the buckling deformation of composite materials under the
prestrains should be avoided. Therefore, it is necessary to
optimize the inhomogeneous SMPC laminate to obtain the
corresponding fiber stacking configuration with the maxi-
mum critical buckling prestrain.

The optimization design of SMPC laminates is not a
simple linear continuous problem, and the optimal fiber
stacking configuration cannot be obtained by simply deriv-
ing the objective function. In addition, for inhomogeneous
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Fig. 10 The normalized buckling amplitude when ε/εc = 3: a inhomo-
geneous SMPC with a ply angle of 45 ◦ at different temperatures, and
b inhomogeneous SMPC with different ply angles at 60 ◦C

SMPC laminates with more layers, i.e., inhomogeneous
SMPC laminates with a fiber stacking configuration of
[±θ1/ ± θ2/ ± θ3 . . . / ± θn] (0 < θn ≤ 90, where θn is
an integer), if the calculation is performed using the exhaus-
tive method in the previous section, the calculation efficiency
decreases significantly as the number of layers increases.
Therefore, we must find a suitable optimization method to
optimize the fiber stacking configurations of inhomogeneous
[±θ1/ ± θ2/ ± θ3 . . . / ± θn] SMPCs and find the maximum
critical buckling prestrains with different γ to obtain the cor-
responding optimal fiber stacking configurations.

According to a study by Wei et al. [34], the genetic
algorithm (GA) is very suitable for solving optimization

problems with discrete design variables, offering excellent
global convergence and robustness. In this section, the GA
is used to calculate the maximum critical buckling strains
of [±θ1/ ± θ2/ ± θ3 . . . / ± θn] under different γ and obtain
the corresponding optimal fiber stacking configurations,
where n = 2, 3, 4, and 5, and T = 20◦C. The flowchart of the
GA is shown in Fig. S2 (Supplementary Information), and the
specific parameters for the genetic algorithm are described
in Section S3 (Supplementary Information). After several
generations of evolution, the maximum critical prestrain of
the inhomogeneous SMPC laminate and the corresponding
optimal fiber stacking configuration can be obtained.

Figure 11 shows the evolutionary processes of the criti-
cal buckling prestrains of inhomogeneous SMPC laminates
with different numbers of layers (γ = 0, T = 20◦C). The
optimal critical prestrains and the average critical prestrains
can converge rapidly as the number of layers increases from
4 to 10. When the number of iterations is greater than 15,
the average prestrain curve is very close to the maximum
prestrain curve, implying that most populations are already
in the optimal solution at that time, so the global optimal
solution can be obtained rapidly through GA.

Table 1 shows the optimal stacking sequences and cor-
responding critical buckling prestrains of inhomogeneous
SMPC laminates at 20◦C. In addition, the influence of γ is
also considered. The optimal fiber plying angle is 66◦ when
γ = 0, which does not change with the increase in the num-
ber of layers, i.e., the inhomogeneous SMPC laminate with
the fiber stacking configuration of [±66]n has the strongest
resistance to buckling deformation under the uniaxial pre-
strain state. When 0 < γ < 0.4, the optimal fiber stacking
configuration changes with an increase in the number of lay-
ers, and the optimal fiber plying angle also increases with
an increase in γ . When γ > 0.4, the optimal fiber plying
angle remains at 90 ◦ regardless of the number of layers.
In addition, the maximum critical buckling prestrain of the
inhomogeneous SMPC laminate decreases with increasing
γ but is independent of the number of layers.

6 Conclusion

In this study, a macroscopic buckling model for inhomo-
geneous SMPC laminates under initial biaxial prestrains is
established. The influences of biaxiality of the prestrains,
temperature, and fiber ply angle on the buckling wavelength,
critical buckling prestrain, and buckling amplitude are cal-
culated through the energy method. In addition, the optimal
fiber stacking configurations of the inhomogeneous SMPC
laminates are optimized using a genetic algorithm. The main
conclusions of this study are as follows:
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Fig. 11 The evolution of critical buckling prestrain of inhomogeneous SMPC at 20◦C using GA

1. When the thickness of the resin-rich region exceeds a
certain value (k H > 4.5), the strain energy of the resin
matrix is only related to the mechanical properties of the
resin and the buckling amplitude of the SMPC laminate,
which is independent of H .

2. The critical buckling wavelength of the inhomogeneous
SMPC laminate is independent of the prestrains, but it
increases with increasing temperature and decrease with
increasing fiber plying angle. However, when the tem-
perature increases from 60◦C to 80◦C, the influence of α

on λ becomes significantly severe and abnormal.
3. The critical buckling prestrain of the inhomogeneous

SMPC laminate decreases with increasing temperature,
increasing biaxiality of the prestrains, or decreasing
fiber plying angle, while the amplitude decreases with

increasing biaxiality of the prestrains, but it is almost
independent of temperature.

4. A genetic algorithm is used to calculate the max-
imum critical buckling prestrains of inhomogeneous
SMPC laminates with a fiber stacking configuration of
[±θ1/ ± θ2/ ± θ3 . . . / ± θn] under different biaxialities
of prestrains and obtain the corresponding optimal fiber
stacking configurations. The optimal fiber plying angle
is always 66◦ when γ = 0; when γ > 0.4, the optimal
fiber plying angle is always 90◦; and when 0 < γ < 0.4,
the optimal fiber stacking configuration changes with the
number of layers and γ . The maximum critical buck-
ling prestrain of the inhomogeneous SMPC laminate
decreases with increasing γ but is independent of the
number of layers.
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Table 1 Optimal stacking
sequence and the corresponding
critical buckling prestrain of
inhomogeneous SMPC at 20◦C
using GA

Biaxiality of prestrain Optimal stacking sequence The critical buckling prestrain (%)

γ = 0 [±66/ ± 66] 9.69

[±66/ ± 66/ ± 66] 9.69

[±66/ ± 66/ ± 66/ ± 66] 9.69

[±66/ ± 66/ ± 66/ ± 66/ ± 66] 9.69

γ = 0.1 [±71/ ± 71] 8.98

[±73/ ± 69/ ± 73] 8.99

[±76/ ± 69/ ± 69/ ± 76] 9.00

[±81/ ± 69/ ± 69/ ± 69/ ± 81] 9.01

γ = 0.2 [±82/ ± 82] 8.55

[±90/ ± 73/ ± 90] 8.59

[±90/ ± 74/ ± 74/ ± 90] 8.60

[±90/ ± 75/ ± 73/ ± 75/ ± 90] 8.60

γ = 0.3 [±90/ ± 90] 8.31

[±90/ ± 82/ ± 90] 8.31

[±90/ ± 85/ ± 85/ ± 90] 8.31

[±90/ ± 90/ ± 81/ ± 90/ ± 90] 8.31

γ = 0.4 [±90/ ± 90] 8.09

[±90/ ± 90/ ± 90] 8.09

[±90/ ± 90/ ± 90/ ± 90] 8.09

[±90/ ± 90/ ± 90/ ± 90/ ± 90] 8.09

γ = 1 [±90/ ± 90] 7.00

[±90/ ± 90/ ± 90] 7.00

[±90/ ± 90/ ± 90/ ± 90] 7.00

[±90/ ± 90/ ± 90/ ± 90/ ± 90] 7.00

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10338-023-00454-4.
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